Type and composition of surfactants mediating gene transfection of polyethylenimine-coated liposomes
نویسندگان
چکیده
BACKGROUND The objective of this study was to compare the transfection efficiency of anionic liposomes coated with polyethylenimine (PEI) with that of PEI and Lipofectamine 2000(™) using the plasmid DNA encoding green fluorescent protein in a human hepatoma (Huh7) cell line. METHODS Factors affecting transfection efficiency, including type of surfactant, ratio of phosphatidylcholine (PC)/surfactant, carrier/DNA weight ratio, and the presence of serum have been investigated. Anionic liposomes, composed of PC and anionic surfactants, ie, sodium oleate (NaO), sodium taurocholate (NaT), or zwitterionic surfactant (3-[{3-cholamidopropyl}-dimethylammonio]-1-propanesulfonate, CHAPS) at molar ratios of 10:1, 10:1.5, and 10:2 were prepared by the sonication method. Subsequently, they were coated with PEI to produce polycationic liposomes (PCL). RESULTS PCL was able to condense with pDNA depending on the PCL/DNA weight ratio. PCL composed of PC:NaO (10:2) showed higher transfection efficiency than NaT and CHAPS at all weight ratios tested. Higher transfection efficiency and gene expression were observed when the carrier/DNA weight ratio increased. The highest transfection efficiency was found at a weight ratio of 0.5. CONCLUSION This PCL showed remarkably high transfection efficiency with low cytotoxicity to Huh7 cells in vitro, in comparison with PEI and Lipofectamine 2000.
منابع مشابه
Investigating lipopolymers based on polyethylenimine and nanoliposome for gene delivery to prostate cancer (PC3) cell line
Background: Non-viral Nano carriers such as liposomes and cationic polymers based on engineered properties are regarded in gene delivery field. Although these carriers do not have weaknesses of viral vectors, but they are less efficient than viruses and they still need to be improved as favorable gene delivery carriers. Amongst non-viral carriers, cationic liposomes have been proposed for clini...
متن کاملBrevinin-2R-linked polyethylenimine as a promising hybrid nano-gene-delivery vector
Objective(s): Polyethylenimine (PEI) is one of the most widely used polymers in gene delivery. The aim of this study was to modify PEI by replacing some of its primary amines with Brevinin 2R (BR-2R) peptide in order to increase the efficiency of gene delivery.Materials and Methods: Polyethylenimine was modified by BR-2R peptide by two d...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملGene Expression and Pulmonary Toxicity of Chitosan-graft-Polyethylenimine as Aerosol Gene Carrier
Chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer has been used for theimprovement of low transfection efficiency of chitosan. The present study aims to test thepulmonary toxicity and efficiency of CHI-g-PEI as an aerosol gene carrier. Mice were exposedto aerosol containing green-fluorescent protein (GFP)-polyethylenimine (PEI) or GFP-CHIg-PEI complexes for 30 min during the development of ...
متن کاملGene Expression and Pulmonary Toxicity of Chitosan-graft-Polyethylenimine as Aerosol Gene Carrier
Chitosan-graft-polyethylenimine (CHI-g-PEI) copolymer has been used for theimprovement of low transfection efficiency of chitosan. The present study aims to test thepulmonary toxicity and efficiency of CHI-g-PEI as an aerosol gene carrier. Mice were exposedto aerosol containing green-fluorescent protein (GFP)-polyethylenimine (PEI) or GFP-CHIg-PEI complexes for 30 min during the development of ...
متن کامل